11.2 Order-agnostic Binary Search (easy)

Problem Statement #

Given a sorted array of numbers, find if a given number ‘key’ is present in the array. Though we know that the array is sorted, we don’t know if it’s sorted in ascending or descending order. You should assume that the array can have duplicates.

Write a function to return the index of the ‘key’ if it is present in the array, otherwise return -1.

Example 1:

Input: [4, 6, 10], key = 10
Output: 2

Example 2:

Input: [1, 2, 3, 4, 5, 6, 7], key = 5
Output: 4

Example 3:

Input: [10, 6, 4], key = 10
Output: 0

Example 4:

Input: [10, 6, 4], key = 4
Output: 2
class Solution
{
    public static int search(int[] arr, int key) {
        if (arr.length < 2) {
            return arr[0] == key ? 0 : -1;
        }
        int start = 0, end = arr.length - 1;
        if (arr[start] <= arr[end])
            return binarySearchOnAsc(arr, key);
        else
            return binarySearchOnDsc(arr, key);
    }

    private static int binarySearchOnAsc(int[] arr, int key) {
        int start = 0, end = arr.length - 1;

        while (start <= end) {
            int mid = start + (end - start) / 2;

            if (arr[mid] == key)
                return mid;
            else if (arr[mid] < key)
                start = mid + 1;
            else
                end = mid - 1;
        }
        return -1;
    }

    private static int binarySearchOnDsc(int[] arr, int key) {
        int start = 0, end = arr.length - 1;

        while (start <= end) {
            int mid = start + (end - start) / 2;

            if (arr[mid] == key)
                return mid;
            else if (arr[mid] < key)
                end = mid - 1;
            else
                start = mid + 1;
        }
        return -1;
    }

    public static void main(String[] args) {
        System.out.println(search(new int[] { 4, 6, 10 }, 10));
        System.out.println(search(new int[] { 1, 2, 3, 4, 5, 6, 7 }, 5));
        System.out.println(search(new int[] { 10, 6, 4 }, 10));
        System.out.println(search(new int[] { 10, 6, 4 }, 4));
    }
}

Time complexity

Since, we are reducing the search range by half at every step, this means that the time complexity of our algorithm will be O(logN) where ‘N’ is the total elements in the given array.

Space complexity

The algorithm runs in constant space O(1)

Last updated