👨‍💻
Coding Interview Patterns
  • Coding Interview Patterns
  • 1. Pattern: Sliding Window
    • 1.0 Introduction
    • 1.1 Maximum Sum Subarray of Size K (easy)
    • 1.2 Smallest Subarray with a given sum (easy)
    • 1.3 Longest Substring with K Distinct Characters (medium)
    • 1.4 Fruits into Baskets (medium)
    • 1.5 No-repeat Substring (hard)
    • 1.6 Longest Substring with Same Letters after Replacement (hard)
    • 1.7 Longest Subarray with Ones after Replacement (hard)
    • 1.8 - Permutation in a String (hard)
    • 1.9 String Anagrams (hard)
    • 1.10 Smallest Window containing Substring (hard)
    • 1.11 Words Concatenation (hard)
  • 2. Pattern: Two Pointers
    • 2.0 Introduction
    • 2.1 Pair with Target Sum (easy)
    • 2.2 Remove Duplicates (easy)
    • 2.3 Squaring a Sorted Array (easy)
    • 2.4 Triplet Sum to Zero (medium)
    • 2.5 Triplet Sum Close to Target (medium)
    • 2.6 Triplets with Smaller Sum (medium)
    • 2.7 Subarrays with Product Less than a Target (medium)
    • 2.8 Dutch National Flag Problem (medium)
    • 2.9 Comparing Strings containing Backspaces (medium)
    • 2.10 Minimum Window Sort (medium)
  • 7. Pattern: Tree Breadth First Search
    • 7.0 Introduction
    • 7.1 Binary Tree Level Order Traversal (easy)
    • 7.2 Reverse Level Order Traversal (easy)
    • 7.3 Zigzag Traversal (medium)
    • 7.4 Level Averages in a Binary Tree (easy)
    • 7.5 Minimum Depth of a Binary Tree (easy)
    • 7.6 Maximum Depth of Binary Tree (easy)
    • 7.7 Level Order Successor (easy)
    • 7.8 Connect Level Order Siblings (medium)
    • 7.9 Problem Challenge 1 - Connect All Level Order Siblings (medium)
    • 7.10 Problem Challenge 2 - Right View of a Binary Tree (easy)
  • 11. Pattern: Modified Binary Search
    • 11.1 Introduction
    • 11.2 Order-agnostic Binary Search (easy)
    • 11.3
  • 16. Pattern: Topological Sort (Graph)
    • 16.1 Introduction
    • 16.2 Topological Sort (medium)
    • 16.3 Tasks Scheduling (medium)
    • 16.4 Tasks Scheduling Order (medium)
  • Contributor Covenant Code of Conduct
  • Page 1
Powered by GitBook
On this page

Was this helpful?

  1. 7. Pattern: Tree Breadth First Search

7.0 Introduction

Previous7. Pattern: Tree Breadth First SearchNext7.1 Binary Tree Level Order Traversal (easy)

Last updated 3 years ago

Was this helpful?

Here are the steps of our algorithm:

  1. Start by pushing the root node to the queue.

  2. Keep iterating until the queue is empty.

  3. In each iteration, first count the elements in the queue (let’s call it levelSize). We will have these many nodes in the current level.

  4. Next, remove levelSize nodes from the queue and push their value in an array to represent the current level.

  5. After removing each node from the queue, insert both of its children into the queue.

  6. If the queue is not empty, repeat from step 3 for the next level.

Example 1: