šŸ‘Øā€šŸ’»
Coding Interview Patterns
  • Coding Interview Patterns
  • 1. Pattern: Sliding Window
    • 1.0 Introduction
    • 1.1 Maximum Sum Subarray of Size K (easy)
    • 1.2 Smallest Subarray with a given sum (easy)
    • 1.3 Longest Substring with K Distinct Characters (medium)
    • 1.4 Fruits into Baskets (medium)
    • 1.5 No-repeat Substring (hard)
    • 1.6 Longest Substring with Same Letters after Replacement (hard)
    • 1.7 Longest Subarray with Ones after Replacement (hard)
    • 1.8 - Permutation in a String (hard)
    • 1.9 String Anagrams (hard)
    • 1.10 Smallest Window containing Substring (hard)
    • 1.11 Words Concatenation (hard)
  • 2. Pattern: Two Pointers
    • 2.0 Introduction
    • 2.1 Pair with Target Sum (easy)
    • 2.2 Remove Duplicates (easy)
    • 2.3 Squaring a Sorted Array (easy)
    • 2.4 Triplet Sum to Zero (medium)
    • 2.5 Triplet Sum Close to Target (medium)
    • 2.6 Triplets with Smaller Sum (medium)
    • 2.7 Subarrays with Product Less than a Target (medium)
    • 2.8 Dutch National Flag Problem (medium)
    • 2.9 Comparing Strings containing Backspaces (medium)
    • 2.10 Minimum Window Sort (medium)
  • 7. Pattern: Tree Breadth First Search
    • 7.0 Introduction
    • 7.1 Binary Tree Level Order Traversal (easy)
    • 7.2 Reverse Level Order Traversal (easy)
    • 7.3 Zigzag Traversal (medium)
    • 7.4 Level Averages in a Binary Tree (easy)
    • 7.5 Minimum Depth of a Binary Tree (easy)
    • 7.6 Maximum Depth of Binary Tree (easy)
    • 7.7 Level Order Successor (easy)
    • 7.8 Connect Level Order Siblings (medium)
    • 7.9 Problem Challenge 1 - Connect All Level Order Siblings (medium)
    • 7.10 Problem Challenge 2 - Right View of a Binary Tree (easy)
  • 11. Pattern: Modified Binary Search
    • 11.1 Introduction
    • 11.2 Order-agnostic Binary Search (easy)
    • 11.3
  • 16. Pattern: Topological Sort (Graph)
    • 16.1 Introduction
    • 16.2 Topological Sort (medium)
    • 16.3 Tasks Scheduling (medium)
    • 16.4 Tasks Scheduling Order (medium)
  • Contributor Covenant Code of Conduct
  • Page 1
Powered by GitBook
On this page

Was this helpful?

  1. 7. Pattern: Tree Breadth First Search

7.8 Connect Level Order Siblings (medium)

Previous7.7 Level Order Successor (easy)Next7.9 Problem Challenge 1 - Connect All Level Order Siblings (medium)

Last updated 3 years ago

Was this helpful?

You are given a perfect binary tree where all leaves are on the same level, and every parent has two children. The binary tree has the following definition:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.

Initially, all next pointers are set to NULL.

Example 1:

Input: root = [1,2,3,4,5,6,7]
Output: [1,#,2,3,#,4,5,6,7,#]
Explanation: Given the above perfect binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.

Example 2:

Input: root = []
Output: []

Constraints:

  • The number of nodes in the tree is in the range [0, 212 - 1].

  • -1000 <= Node.val <= 1000

/*
// Definition for a Node.
class Node {
    public int val;
    public Node left;
    public Node right;
    public Node next;

    public Node() {}
    
    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
*/

class Solution {
    public Node connect(Node root) {
        // Node result = null;
        if(root == null) return null;
        Queue<Node> q = new LinkedList<>();
        q.offer(root);
        
        while(!q.isEmpty()) {
            int levelSize = q.size();
            Node prev = null;
            
            for(int i = 0; i < levelSize; i++) {
                Node curr = q.poll();
                if(prev != null)
                    prev.next = curr;
                prev = curr;
                
                if(curr.left != null) q.offer(curr.left);
                if(curr.right != null) q.offer(curr.right);
            }
        }
        return root;
    }
}

The time complexity of the above algorithm is O(N), where ā€˜N’ is the total number of nodes in the tree. This is due to the fact that we traverse each node once.

The space complexity of the above algorithm will be O(N), which is required for the queue. Since we can have a maximum of N/2 nodes at any level (this could happen only at the lowest level), therefore we will need O(N) space to store them in the queue.

Time complexity

Space complexity

#
#