The number of nodes in the tree is in the range [0, 2000].
-1000 <= Node.val <= 1000
import java.util.*;
class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) {
val = x;
}
};
class Main {
public static List<List<Integer>> traverse(TreeNode root) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
if (root == null)
return result;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int levelSize = queue.size();
List<Integer> currentLevel = new ArrayList<>(levelSize);
for (int i = 0; i < levelSize; i++) {
TreeNode currentNode = queue.poll();
// add the node to the current level
currentLevel.add(currentNode.val);
// insert the children of current node in the queue
if (currentNode.left != null)
queue.offer(currentNode.left);
if (currentNode.right != null)
queue.offer(currentNode.right);
}
result.add(currentLevel);
}
return result;
}
public static void main(String[] args) {
TreeNode root = new TreeNode(12);
root.left = new TreeNode(7);
root.right = new TreeNode(1);
root.left.left = new TreeNode(9);
root.right.left = new TreeNode(10);
root.right.right = new TreeNode(5);
List<List<Integer>> result = Main.traverse(root);
System.out.println("Level order traversal: " + result);
}
}
The time complexity of the above algorithm is O(N), where ‘N’ is the total number of nodes in the tree. This is due to the fact that we traverse each node once.
The space complexity of the above algorithm will be O(N) as we need to return a list containing the level order traversal. We will also need O(N) space for the queue. Since we can have a maximum of N/2 nodes at any level (this could happen only at the lowest level), therefore we will need O(N) space to store them in the queue.